Eachlabs Face Swap

each-faceswap-v1

Swap faces between images effortlessly! Integrate your app with the Faceswap model by Eachlabs for smooth and seamless transformations.

Fast Inference
REST API

Model Information

Response Time~0 sec
StatusActive
Version
0.0.1
Updated8 days ago

Prerequisites

  • Create an API Key from the Eachlabs Console
  • Install the required dependencies for your chosen language (e.g., requests for Python)

API Integration Steps

1. Create a Prediction

Send a POST request to create a new prediction. This will return a prediction ID that you'll use to check the result. The request should include your model inputs and API key.

import requests
import time
API_KEY = "YOUR_API_KEY" # Replace with your API key
HEADERS = {
"X-API-Key": API_KEY,
"Content-Type": "application/json"
}
def create_prediction():
response = requests.post(
"https://api.eachlabs.ai/v1/prediction/",
headers=HEADERS,
json={
"model": "each-faceswap-v1",
"version": "0.0.1",
"input": {
"target_image_gif_or_video": "your_file.image/jpeg",
"source_image": "your_file.image/jpeg"
}
}
)
prediction = response.json()
if prediction["status"] != "success":
raise Exception(f"Prediction failed: {prediction}")
return prediction["predictionID"]

2. Get Prediction Result

Poll the prediction endpoint with the prediction ID until the result is ready. The API uses long-polling, so you'll need to repeatedly check until you receive a success status.

def get_prediction(prediction_id):
while True:
result = requests.get(
f"https://api.eachlabs.ai/v1/prediction/{prediction_id}",
headers=HEADERS
).json()
if result["status"] == "success":
return result
elif result["status"] == "error":
raise Exception(f"Prediction failed: {result}")
time.sleep(1) # Wait before polling again

3. Complete Example

Here's a complete example that puts it all together, including error handling and result processing. This shows how to create a prediction and wait for the result in a production environment.

try:
# Create prediction
prediction_id = create_prediction()
print(f"Prediction created: {prediction_id}")
# Get result
result = get_prediction(prediction_id)
print(f"Output URL: {result['output']}")
print(f"Processing time: {result['metrics']['predict_time']}s")
except Exception as e:
print(f"Error: {e}")

Additional Information

  • The API uses a two-step process: create prediction and poll for results
  • Response time: -
  • Rate limit: 60 requests/minute
  • Concurrent requests: 10 maximum
  • Use long-polling to check prediction status until completion

Related AI Models

flux-fill-pro

Flux Fill Pro

flux-fill-pro

Image to Image
flux-depth-dev

Flux Depth Dev

flux-depth-dev

Image to Image
sdxl-controlnet-lora

SDXL Controlnet Lora

sdxl-controlnet-lora

Image to Image
sdxl-controlnet

SDXL Controlnet

sdxl-controlnet

Image to Image